
Guest Lecture on Model-Based
testing

Kristian Karl, krikar@spotify.com

A little about me
● Ericsson, 1994

● Various consultant companies, 1998 -> 2010

● Spotify since 2010

● Model-based testing since 2004
● GraphWalker 2005

I. Theory and practicalities
II. Put to the test in the industry

Model-Based Testing

Model Based Testing
Theory and practicalities

Very [and unscientific] brief history of MBT

● 15 May, 1997
Software Quality Week Conference in May, 1997
http://www.geocities.ws/model_based_testing/sqw97.pdf

● 13:52, 30 December 2004
First edit in Wikipedia
https://en.wikipedia.org/wiki/Model-based_testing

● I met Harry Robinson May 2004
http://www.harryrobinson.net/

http://www.geocities.ws/model_based_testing/sqw97.pdf
https://en.wikipedia.org/wiki/Model-based_testing
http://www.harryrobinson.net/

What is MBT?

● Behavior
Models are the expected behavior of a System Under
Test.

● Simplification
Models are much simpler than the the reality.

● Automation
From the models, test are automatically generated.

State diagrams

● State diagrams are a set of states and the
relationships between them.

● GraphWalker uses directed graphs.

GraphWalker history

● Open source from the beginning
● 2005 - Started as mbt.tigris.org
● 2010/11 - Changed name to GraphWalker

and moved to Github

States, aka nodes or vertices

● A state represents something that can be
verified.
○ Does the app appear in a process list?
○ Does the app display a window?
○ Does a service generate a heart beat?

Transitions, aka edges or arrows

● An edge transitions the model to another
state.
○ Launch an app.
○ Start a service.
○ Add a record to a database.

Creating tests

To automatically generate some
test(s) from model(s) we need to tell
GraphWalker:

● Where to start?
● How to end?

Generating paths

random(edge_coverage(100))

Generating paths

quick_random(edge_coverage(100))

Generating paths

random(reached_vertex(App_running))

Generating paths - generators

● random
● quick_random
● weighted_random

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

Generating paths - stop condition

● edge_coverage
● vertex_coverage
● reached_vertex
● reached_edge
● time_duration
● length

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

Generating paths - generator and stop
condition

random(edge_coverage(100))

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

Generating paths - combining stop conditions

random(edge_coverage(100) or
vertex_coverage(100))

random(edge_coverage(100) ||
time_duration(500))

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

Generating paths - combining generators

random(reached_vertex(v_SomeVertex)
and edge_coverage(100))
random(time_duration(3600))

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions

Multiple models

Multiple models - shared vertices

● A complex model may be broken up into
smaller models.

● Vertices with shared names act like portals or
bridges.

Multiple models - PetClinic

Multiple models - FindOwners

Multiple models - NewOwner

Multiple models - OwnerInformation

Connecting model(s) to code

Java - Connecting model(s) to code

● Graphwalker will generate a java Interface
for each model.

● The interfaces needs to be implemented.
● They contain the necessary code that verifies

or transitions the system under test to the next
desired state.

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

// Generated by GraphWalker (http://www.graphwalker.org)
package com.company;

import org.graphwalker.java.annotation.Model;
import org.graphwalker.java.annotation.Vertex;
import org.graphwalker.java.annotation.Edge;

@Model(file = "com/company/SmallTest.json")
public interface SmallTest {

 @Edge()
 void e_FirstAction();

 @Edge()
 void e_SomeOtherAction();

 @Vertex()
 void v_VerifyFirstAction()

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

public class SomeSmallTest extends ExecutionContext implements SmallTest {

 @Override

 public void e_FirstAction() {

 System.out.println("Running: e_FirstAction");

 }

 @Override

 public void e_SomeOtherAction() {

 System.out.println("Running: e_SomeOtherAction");

 }

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

mvn archetype:generate -B
-DarchetypeGroupId=org.graphwalker
-DarchetypeArtifactId=graphwalker-ma
ven-archetype -DgroupId=com.company
-DartifactId=myProject
-DarchetypeVersion=LATEST

Boilerplate

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

├── pom.xml
└── src
 └── main
 ├── java
 │ └── com
 │ └── company
 │ ├── Runner.java
 │ └── SomeSmallTest.java
 └── resources
 └── com
 └── company
 └── SmallTest.json

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

mvn compile exec:java
-Dexec.mainClass="com.company.Runner"

Running it

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

Done: [{

 "totalFailedNumberOfModels": 0,

 "totalNotExecutedNumberOfModels": 0,

 "totalNumberOfUnvisitedVertices": 0,

 "verticesNotVisited": [],

 "totalNumberOfModels": 1,

 "totalCompletedNumberOfModels": 1,

 "totalNumberOfVisitedEdges": 4,

 "totalIncompleteNumberOfModels": 0,

 "edgesNotVisited": [],

 "vertexCoverage": 100,

 "totalNumberOfEdges": 4,

 "totalNumberOfVisitedVertices": 3,

 "edgeCoverage": 100,

 "totalNumberOfVertices": 3,

 "totalNumberOfUnvisitedEdges": 0

}]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 5.828 s

[INFO] Finished at: 2022-09-27T08:17:23+02:00

[INFO] --

https://github.com/GraphWalker/graphwalker-project/wiki/Create-boilerplate-project-using-maven

https://github.com/GraphWalker/graphwalker-project/wiki/Maven---generate-sources

Graphwalker Model file:
SmallTest.json

mvn graphwalker:generate-sources

Generated Java Interface source file:
target/generated-sources/graphwalker/com/company/SmallTest.java

https://github.com/GraphWalker/graphwalker-project/wiki/Maven---generate-sources

Model Based Testing
Put to the test in the industry

Client crashes

…we have received ca. 12GB crashdumps in the
approx. one week the Socorro installation is up and
running. We received 101264 crashes, with an avg.
size of 125kB each. The storage of the processed
(and compressed) output takes 475MB. I think a
compression to 10% of the crash dumps is possible
by running gzip, so we’d end up with approx. 2GB
each week at the current rate (which will of course
go down soon J).

Slow Death By
Regression Testing

The balance between retesting already
delivered features vs testing new
features.

Test automation aimed to free up the
testers time to focus on new features.

Model Based
Testing

Models can be used to represent the
desired behavior of a system under
test (SUT)

170 models

2047 states

2897 transitions

Supporting
systems
test data
test results
dashboards
hardware
emulators
simulators
virtual machines
test interfaces

Virtual machines

Sikuli

Automates anything you see on the screen of your
desktop computer running Windows, Mac or some
Linux/Unix. It uses image recognition powered by
OpenCV to identify GUI components.

public static boolean isLoginShown() throws FileNotFoundException
{
 logger.debug("Login view is currently shown");
 return checkExist("login/sign_in.png", 10);
}

NuRemote lib included

NuRemote lib included

But it was not good enough

Moving activities upstream

• Continuous delivery with quality

• Testing while coding

• Trusting the automation

• Team and products are always in a
deliverable state

• This drives tech stacks to be testable,
which usually has the benefit of a better
architecture.

Fearless Development

• Automated tests has to be predictable.

• They need to deliver quick feedback.

• The need to deliver understandable feedback.

• It has to fit the CI pipelines.

• It’s a difference designing a test to find bugs
than to verify functionality.

The end of random long
running tests?

• It focuses on the desired behavior.

• It covers a lot of the system under test.

• It bridges the gap between stakeholders and
engineers.

• It’s easier to maintain than similar test approaches.

• It’s interchangeable with test drivers.

It has proven its worth

● Graphwalker
● Practitioners’ best practices to Adopt, Use or Abandon

Model-based Testing with Graphical models for
Software-intensive Systems

● Practical Model-Based Testing — Say “Hello MBT”
● State Transition Testing – Automated Tests for

Authentication Flows
● http://www.harryrobinson.net/
● What is Model-based testing

Some useful links and reading

https://graphwalker.github.io/
https://link.springer.com/article/10.1007/s10664-022-10145-2
https://link.springer.com/article/10.1007/s10664-022-10145-2
https://link.springer.com/article/10.1007/s10664-022-10145-2
https://medium.com/cyberark-engineering/practical-model-based-testing-say-hello-mbt-b16292ffff06
https://altom.com/state-transition-testing-automated-tests-for-authentication-flows/
https://altom.com/state-transition-testing-automated-tests-for-authentication-flows/
http://www.harryrobinson.net/
https://medium.com/@yugene1986/what-is-model-based-testing-db3ebde10683

